PART I

A. Find the **exact values** of the following without a calculator:

2.
$$\cos \frac{\pi}{8}$$

B. Simplify each of the following:

1.
$$2\sin(x + 20^{\circ})\cos(x + 20^{\circ})$$

2.
$$1 - 2\sin^2(\frac{1}{4}\pi)$$

3.
$$(\sin x - \cos x)^2$$

C. Find the values of $\sin 2x$, $\cos 2x$, and $\tan 2x$ in each of the following without a calculator.

$$1. \sin x = \frac{3}{5}$$

2.
$$\cos x = \frac{12}{13}$$

3.
$$\tan x = -\frac{3}{4}$$

D. If $3\sin 2x = 2\cos x$, find the values of $\cos 2x$.

E. If
$$\cos x = -\frac{7}{25}$$
, find $\sin \frac{1}{2}x$, $\cos \frac{1}{2}x$, and $\tan \frac{1}{2}x$ without a calculator.

F. Simplify
$$\frac{\cos 2x + 1}{\cos x}$$

PART II

A. Solve the following trigonometric equations (no calculators). If no domain is given, give the *general* solution (all solutions). If the domain is given in degrees, give the answers in degrees. If the domain is given in radians, give the answers in radians.

1.
$$2\cos x = 1$$

2.
$$\tan x + 1 = 0$$
, $0 \le x \le 360^{\circ}$

3.
$$4\sin x + 3 = 0, -\pi \le x \le \pi$$

4.
$$2\cos^2 x + 3\cos x - 2 = 0$$
, $0 \le x \le 2\pi$

5.
$$2\cos^2 x - \sin x = 1, -180^\circ \le x \le 180$$

6.
$$\sqrt{3}\cos x - \sin x = 0, -\pi \le x \le \pi$$

7.
$$\cos 2x - \cos x = 0$$
, $0 \le x \le 360^{\circ}$

8.
$$2\sin(x-60^\circ) = 1$$
, $0 \le x \le 360^\circ$

9.
$$3\cos\left(x - \frac{1}{6}\pi\right) + 1 = 0, -\pi \le x \le \pi$$

10.
$$3\sin 3x + 1 = 0$$
, $0 \le x \le \pi$

11.
$$\tan 4x = \sqrt{3}, \ 0 \le x \le 180^{\circ}$$

12.
$$\frac{1}{\tan x} + \tan x = 4, -\pi \le x \le \pi$$

B. Simplify the following:

$$1. \ \frac{\sin x}{\csc x} + \frac{\cos x}{\sec x}$$

2.
$$\cos^2 1 \frac{1}{2} + \sin^2 1 \frac{1}{2}$$

3.
$$(\sin A + \cos A)^2 + (\sin A - \cos A)^2$$

C. Prove the following whenever both sides have meaning:

1.
$$2\cot^2 x - 3\csc^2 x = -2 - \csc^2 x = -3 - \cot^2 x$$

2.
$$\sin A \sec A \cot A + \cos A \csc A \tan A = 2$$

3.
$$\cot^2 A \sec^2 A + \tan^2 A \csc^2 A = \sec^2 A + \csc^2 A$$

4.
$$2\tan^2 A - 3\sec^2 A = 1 - 4\sec^2 A + 3\tan^2 A$$

5.
$$(\cos A - \sin A + 1)^2 = 2(1 + \cos A)(1 - \sin A)$$

6.
$$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2\csc x$$
7.
$$\frac{2\cos A}{\sin A - \cos A} + 1 = \frac{\tan A + 1}{\tan A - 1}$$

7.
$$\frac{2\cos A}{\sin A - \cos A} + 1 = \frac{\tan A + 1}{\tan A - 1}$$

8.
$$\frac{1 + \sec A}{1 - \sec A} = -(\cot A + \csc A)^2$$

9.
$$\frac{(1-\sin A)(1-\cot A)}{(1-\csc A)(1-\tan A)} = \cos A$$

D. Expand, and/or simplify where possible. One step is enough in cases where an expansion would be extremely long (such as #1).

1.
$$\cos 3(A+B)$$

$$2. \sin\left(\frac{\pi}{3} + 2A\right)$$

3.
$$\frac{\tan\frac{1}{4}\pi + \tan A}{1 - \tan\frac{1}{4}\pi \tan A}$$

4.
$$\frac{\tan 80^{\circ} - \tan 35^{\circ}}{\tan 80^{\circ} + \cot 35^{\circ}}$$

E. Express as a single trigonometric function:

1.
$$\cos 55^{\circ} \cos 35^{\circ} - \sin 55^{\circ} \sin 35^{\circ}$$

$$2. \quad \frac{1}{2}\sin A - \frac{1}{2}\sqrt{3}\cos A$$

F. If A is an angle in quadrant 2 and B is an angle in quadrant 3 such that $\sin A = \frac{4}{5}$ and $\tan B = \frac{8}{15}$, evaluate $\cos(A - B)$, $\sin(A + B)$, and $\cos(A + B)$ without a calculator.

G. Prove, whenever both expressions have meaning:

1.
$$\sin(a+b) + \sin(a-b) = 2\sin a \cos b$$

2.
$$\sin B + \cos A \sin(A - B) = \sin A \cos(A - B)$$

3.
$$\tan\left(\frac{\pi}{4} - A\right) = \frac{\cos A - \sin A}{\cos A + \sin A} = \cot\left(\frac{\pi}{4} + A\right)$$

4.
$$\frac{\tan 3A + \tan A}{\tan 3A - \tan A} = 2\cos 2A$$

Н.

1. If
$$\cos A = -\frac{1}{3}$$
, find $\sin \frac{1}{2}A$ and $\cos \frac{1}{2}A$.

2. Find sin x, cos x, and tan x, if
$$\cos 2x = \frac{1}{8}$$

3. Prove that
$$\tan \frac{1}{8}\pi = \sqrt{2} - 1$$

I. Solve the following equations without graphing:

$$1. \cos x - 2\sin x = 1$$

$$2. 3\sin x - 5\cos x = 4$$

3.
$$6\sin x + 3\cos x = \sqrt{5}$$

For #4–5 solve in two ways: (i) by expressing $\cos 2x$ and $\sin 2x$ in terms of $t = \tan x$, and (ii) using an expression of the form $A\sin(2x \pm \alpha)$ or $A\cos(2x \pm \alpha)$.

$$4. \quad 2\cos 2x + \sin 2x = 2$$

5.
$$2\sin 2x - 3\cos 2x = \frac{1}{2}$$

PART III

A. Evaluate *where possible*. Give exact answers. If a problem requires a calculator in order to solve, then state that a calculator is required, and then evaluate it. Only one problem requires a calculator.

1.
$$\arcsin\left(-\frac{1}{2}\sqrt{3}\right)$$

2.
$$\arccos\left(\arcsin\frac{3}{5}\right)$$

3.
$$\arctan(\tan(-\pi))$$

4.
$$\cos\left(\arcsin\left(-\frac{1}{2}\right)\right)$$

- B. 1. For which numbers a is it true that $\arcsin(\sin a) = a$?
 - 2. For which numbers b is it true that sin(arcsin b) = b?
 - 3. For which numbers c is it true that arcos(cos c) = c?
 - 4. For which numbers *d* is it true that cos(arcos d) = d?

In all cases, explain your reasoning.

- C. Using the identity $\cos\left(\frac{1}{2}\pi \theta\right) = \sin\theta$, show that $\arcsin x + \arccos x = \frac{1}{2}\pi$ for all $x \in [-1, 1]$.
- D. Find the **exact value** of $\arctan \frac{1}{2} + \arctan \frac{1}{3}$
- E. Prove that $2\arctan\frac{1}{3} + \arctan\frac{1}{7} = \frac{1}{4}\pi$

PART IV

A. Differentiate each of the following with respect to x.

- 1. $\arcsin(3x)$
- 2. arcos(x+1)
- 3. $\arctan(x^2)$
- 4. $\ln(\arcsin x)$
- 5. $x \arctan(x^2)$

B. For the function $f(x) = \arctan 2x$,

- 1. Sketch the graph of y = f(x)
- 2. Evaluate $f\left(\frac{1}{2}\right)$
- 3. Solve the equation f(x) = 1
- 4. Calculate the gradient to the curve at x = 3
- 5. Find the equation of the tangent line to the curve at $x = -\frac{1}{2}$

PART V

A. Integrate each of the following with respect to x.

1.
$$\int \frac{3}{\sqrt{9-x^2}} dx$$

$$2. \qquad \int \frac{4}{\sqrt{2-3x^2}} dx$$

$$3. \qquad \int \frac{6}{9+x^2} dx$$

$$4. \qquad \int \frac{2}{3+4x^2} dx$$

$$5. \qquad \int \frac{1}{\sqrt{4 - \left(x + 1\right)^2}} dx$$

6.
$$\int \frac{1}{4 + (x - 3)^2} dx$$

7.
$$\int \frac{4}{10 - 2x + x^2} dx$$

7.
$$\int \frac{4}{10 - 2x + x^2} dx$$
8.
$$\int_{-5}^{-1} \frac{1}{\sqrt{7 - 6x - x^2}} dx$$

B. Integrate each of the following:

$$1. \qquad \int \frac{2}{\sqrt{1-4x^2}} dx$$

$$2. \qquad \int \frac{3x+4}{x^2+4} dx$$

$$3. \qquad \int \left(3 + \frac{2x}{\sqrt{x^2 + 4}}\right)^2 dx$$

4.
$$\int_{2}^{2\sqrt{3}} \frac{(1+x)^2}{4+x^2} dx$$

PART VI

- A. Find the area of the segment of a circle of radius 12 cm cut off by a chord of length 10 cm.
- B. Two circles of radii 15 cm and 8 cm have their centers 17 cm apart. Find the area common to both circles.
- C. A unit circle has a sector cut out of it with a central angle of θ . When a chord is drawn across the sector with the endpoints each touching the circle, the area of the triangle formed is 3 times the area of the remaining area of the sector of the circle. Find θ .